
Multibody Dynamics Simulator

dr. Janko SLAVIČ

http://www.fs.uni-lj.si/ladisk/˜slavic/mbd/

August 28, 2009

http://www.fs.uni-lj.si/ladisk/~slavic/mbd/

Contents

1 Introduction 4

2 Running the program 5

2.1 Front panel . 5

2.1.1 Control window . 5

2.1.2 Jobs window . 6

2.1.3 History window . 6

2.1.4 Plot window . 6

2.2 Defining a Model - 2 Mass Example . 9

2.2.1 The environment . 9

2.2.2 Bodies . 9

2.2.3 Generalized coordinates . 10

2.2.4 Dependent coordinates . 11

2.2.5 Mass matrix . 11

2.2.6 H Vector . 11

2.2.7 Constants . 11

2.2.8 Mechanical energy . 11

2.2.9 Contact properties . 12

2.2.10 Watches . 12

2.2.11 Running the model . 12

2.2.12 Results . 13

2.3 Defining a model - Woodpecker 4 DoF Example . 13

2.3.1 Defining the model with Mathematica packages . 13

2.3.2 The environment . 16

2.3.3 Defining body shape, contact properties, etc . 17

2.4 Defining a model - WearBalls . 19

2

CONTENTS 3

3 Specification 22

3.1 Units . 22

3.2 Mathematical expression . 22

3.3 Shortcut keys . 24

3.4 File specifications . 25

3.4.1 World . 25

3.4.2 Job . 27

3.4.3 Body . 28

3.4.4 ExtrusionShape . 30

3.4.5 GeneralizedCoordinates . 30

3.4.6 DependentCoordinates . 30

3.4.7 Constants . 31

3.4.8 HVector . 31

3.4.9 MechanicalEnergy . 32

3.4.10 MassMatrix . 33

3.4.11 ContactProperties . 33

3.4.12 Watches and Reshaping . 34

References 37

Chapter 1

Introduction

Multibody Dynamics Simulator resulted from the PhD work [1] on planar dynamics of rigid bodies with
unilateral contacts (as Linear Complementarity Problems-LCP). Most of the theory is covered in the
book by Pfeiffer and Glocker [2]. There are many more references, but if you need one book to start, this
is it!
Some extensions to the Pfeiffer and Glocker formulations built into the program are:

• arbitrary shape of planar discrete bodies that can have unilateral contacts [3],

• tracking mechanical energy lost at contact surfaces [4],

• geometrical roughness phenomena and run-in wear [4, 5].

The program is written in Delphi 7 and uses GLScene Open GL library for graphics and a modified
ParseExpr for handling symbolic mathematical expressions at run-time.
To run the program you need MultiBodyDynamicsSimulator.exe and the qtintf70.dll ; it is recommended
that both files are in path.

4

Chapter 2

Running the program

In this section a quick overview on running the program will be given. First a the program in the
section 2.1 the Front panel is presented and than in the Section 2.2 the program in shown by a simple
example model.
You can skip the Front panel section if you are eager to start using the program ASAP.

2.1 Front panel

Figure 2.1 shows the Multibody Dynamics Simulator windows: Main window , Control window , Log win-
dow , History window , Jobs window and the Plot window .

2.1.1 Control window

Expanded Control window is shown in Figure 2.2 and has this sections:

• World

– LCP Solver . Used to change parameters of the Linear Complementarity Problem Solver (sec-
tion 3.4.1)

– Create next version. Creates next version of the current model. If the current model is in
directory 000, then the new directory will be 001. Usually, this option is used to create the
next version of the model if the model is changing due to wear (section 3.4.2).

• Bodies. Used to change the way the bodies are displayed

– Body . Used to show each body’ Bounding Box, Contact Watches (section 3.4.12), get body’
mass and mass moment of inertia and also to set transparency (section 3.4.3).

• Collisions. Used to control what happens at collision (section 3.4.1).

• History . Used to control frequency of saved data (section 3.4.1).

• Log . Used to control what goes int the log file/window (section 3.4.1).

5

2.1 Front panel 6

• Pointer . Used to set the focus.

• Orientation box . Used to control the orientation box (the room).

• Axes. Used to show the inertial coordinate system.

Figure 2.1: MultiBody Dynamics Simulator.

2.1.2 Jobs window

Jobs window is active only if a Job is running (section 3.4.2). Via this window the execution of jobs can
be controlled.

2.1.3 History window

Each model has its own folder and each simulation run has a 3digit numerated subfolder (e.g. 000,
001,. . .). In the history window this subfolders are listed for loading, deleting, resampling. The option
Start with this is used to start a new simulation where the selected simulation in the history window
ended.

2.1.4 Plot window

The Plot window is used to show watches at selected contact points (section 3.4.12).

2.1 Front panel 7

Figure 2.2: Control window.

2.1 Front panel 8

Figure 2.3: Plot results window.

2.2 Defining a Model - 2 Mass Example 9

2.2 Defining a Model - 2 Mass Example

The dynamical model is defined by several files (mass matrix, shapes, contact parameters,. . .). It is
advised to create a separate folder for each model.
Each run of a model will create a three digital sub-folder starting with 000 (following with 001,002,. . .).
In this way each simulation can have different parameters or shapes; this is especially useful in wear-in
simulations where the body-shapes change with each simulation.

The creation of a simple 2Mass model will shown here.

2.2.1 The environment

The main file of a model is the World file.

A simple world file is:

[main]
numberOfGeneralizedCoodinates = 3
minimumTimestep = 1e-10
maximumTimestep = 5e-4
maximumPenetration = 1e-5
breakTime = 0.5

[bodies]
body1 = mass1.bdy
body2 = mass2.bdy

Detailed specifications for the World file are given in section 3.4.1.

2.2.2 Bodies

Each body defined in the World file needs to have a bdy file. A typical body file named mass1.bdy is
(section 3.4.3):

2.2 Defining a Model - 2 Mass Example 10

[main]
name = mass1
RGBcolor = 0 1 0
shapeType = extrusionSolid
shapeFile = mass1.exs
density = 2500
thickness = 0.02
correctOrigin = 0

[startPosition]
x = -0.005
y = 0.15
z = 0
Rx = 0
Ry = 0
Rz = 3.1459

[startVelocity]
x = 0
y = -1
z = 0
Rx = 0
Ry = 0
Rz = 0

As defined in the body file (shapeFile = mass1.exs), the shape is defined in mass1.exs shapeFile (sec-
tion 3.4.4). A simple shape is shown below with listing the x and y points that define the edge of the
body.

points = 6
%%data
0.07 0.00 -0.07 -0.07 0.07 0.07
0.05 0.06 0.05 -0.05 -0.05 0.05
%%enddata

2.2.3 Generalized coordinates

Generalized coordinates are defined in the gc file (section 3.4.5).

In this simple example we would like the body named mass1 to have three degrees of freedom (x, y and
Rz)1.
The 2Mass.gc file is:

1The program uses contexts to organize names of symbols. All bodies are in the context b and each body has its own

context that is the same as the name defined in the body file (bdy).

2.2 Defining a Model - 2 Mass Example 11

b‘mass1‘x[t]
b‘mass1‘y[t]
b‘mass1‘Rz[t]

2.2.4 Dependent coordinates

Generalized coordinates are defined in the dc file (section 3.4.6).

For this simple example the 2Mass.dc file is empty as there are no dependent coordinates. For a non-
empty dc file, see section 2.3.

2.2.5 Mass matrix

The mass matrix is defined in the mmx file (section 3.4.10).

The 2Mass.mmx file is:
b‘mass1‘m 0 0
0 b‘mass1‘m 0
0 0 b‘mass1‘Jzz

2.2.6 H Vector

The equations of motion are written in the form M q̈ = H and the H vector is used to describe the
dynamics that is not covered by the mass matrix M multiplied by the generalized acceleration vector q̈.
The H is defined in the hv file (section 3.4.8).

The 2Mass.hv file is:
0
-(c‘gravity*b‘mass1‘m)
0

2.2.7 Constants

A dynamic model can have several constants that are covered in the cns file (section 3.4.7).

The 2Mass.cns file is:
c‘gravity = 9.81

2.2.8 Mechanical energy

Definition of the mechanical energy is not necessary for running a simulation. However, mechanical
energy defined in the file with the me extension (section 3.4.9) is useful for keeping track of the lost
energy in the system.

2.2 Defining a Model - 2 Mass Example 12

The 2Mass.me file is:
c‘gravity*b‘mass1‘m*b‘mass1‘y[t] + (b‘mass1‘Jzz*Derivative[1][b‘mass1‘Rz][t]ˆ2)/2 +
(b‘mass1‘m*(Derivative[1][b‘mass1‘x][t]ˆ2 + Derivative[1][b‘mass1‘y][t]ˆ2))/2

2.2.9 Contact properties

The contact properties are defined in the cop file. To define contact properties between the bodies the
names defined in the body file are used and for each body pair (section 3.4.11)

The 2Mass.cop file is:

[mass1-mass2]
friction=0.1
restitutionNormal=0.7
restitutionTangent=0.2
parameterNi=0
initialTemperature=0

2.2.10 Watches

What contact properties should the program keep track off is defined in the Watches file, extension wtc
(section 3.4.12).

To keep track of points 0,1 and 2 of the body mass1 in the file looks like this (2Mass.wtc):

[mass1]
contactWatch = 0-2

The watches are written to the file watches.txt , where the header of the watches file is written in the
log.txt (section 2.2.12)

2.2.11 Running the model

Once the model is defined run the Multibody Dynamics Simulator , go to File/Open and find the folder
with the model.wld file. The simulations starts with a click on the green play button. Reduce the
Frames Per Second (FPS) in the lower left edge of the Main window , if you want more computer power
for calculation and less for visualization. You can rotate the model with the mouse and use short-keys
(section 3.3) to zoom in or out. Use the Pointer in the Control window to set focus to an arbitrary point
(by default focus is set to the first body of the system).

2.3 Defining a model - Woodpecker 4 DoF Example 13

2.2.12 Results

Log file For this example the header looks like this:

time mechanicalEnergy b‘mass1‘x b‘mass1‘x’ b‘mass1‘x” b‘mass1‘y b‘mass1‘y’. . .
-
0
0.49995
time mass1#0-impN mass1#0-impT mass1#0-work mass1#1-impN mass1#1-impT. . .

[Alert] Break time of 0.50005s reached.

The first line is the header of the data.txt file.
The 3rd and 4th lines are start and end time, respectively.
The 5th line is the header of the watches.txt file. Lines from 7th on are notes about the simulation.

Data file data.txt stores the time series of the simulation.

Watches file watches.txt stores the watches data of the simulation. For each body the accumulated
watches data can be shown in the Plot window , Figure 2.3.

2.3 Defining a model - Woodpecker 4 DoF Example

The Woodpecker 3DoF and 4DoF models ware presented and analyzed in detail in the research [3], see
Figure 2.4.

2.3.1 Defining the model with Mathematica packages

For the Multibody Dynamics Simulator a set of Mathematica packages was developed to help with defining
the model. The Mathematica notebook for the 2 Mass model is shown in Figure 2.5. And for the
Woodpecker 4 DoF model in Figure 2.6. While the Woodpecker model is more complicated than the 2
Mass model, the Mathematica notebook is still simple.

2.3 Defining a model - Woodpecker 4 DoF Example 14

I

y

x

yM

xM

ϕM

2 hM

2 rM

lMM

cϕ lG
S

hS

lSrS

ϕS

g

r0

Figure 2.4: Woodpecker 4 DoF model.

Libraries
 Path to custom libraries

AppendTo@$Path, "j:êWork JankoêCommonFilesêMath"D;

Needs@"MultiBodyDynamics`MultiBodyDynamics`"D;

2 Mass System
dr. Janko Slavic, 2009
www.fs.uni-lj.si/ladisk/~slavic/

Coordinates
Generalized coordinates

GC := 8
b`mass1`x@tD, b`mass1`y@tD, b`mass1`Rz@tD<;

Dependent coordinates

DC := 8<;

Kinetic, potential energy and virtual work
Kinetic energy

EkAt_E :=

H∗r1∗L
1

2
b`mass1`m ∗ vr1@tD2 +

1

2
b`mass1`Jzz ∗ b`mass1`Rz'@tD2

vr1At_E := b`mass1`x'@tD2 + b`mass1`y'@tD2

Potential energy

EpAt_E := b`mass1`m c`gravity b`mass1`y@tD

Virtual work

δWAt_E := 0

Equations of motion

EM = EquationsOfMotion@Ek@tD, Ep@tD, GeneralizedForces@δW@tD, GCD, GC

8m, h< = MassMatrixAndHVector@Ek@tD, Ep@tD, GeneralizedForces@δW@tD,

MatrixForm@mD

b`mass1`m 0 0
0 b`mass1`m 0
0 0 b`mass1`Jzz

MatrixForm@hD

0
−c`gravity b`mass1`m

0

Name of model, folder name

filename = "2Mass";
folder = "j:ê";

Write mass matrix, h vector and mechanical energy

MMXWrite@folder <> filename <> ".mmx", mD
HVWrite@folder <> filename <> ".hv", hD
HVWrite@folder <> filename <> ".me", Ek@tD + Ep@tDD

Write generalized and dependent coordinates

GCWrite@folder <> filename <> ".gc", GCD
GCWrite@folder <> filename <> ".dc", PrepareDependentCoordinates@Defi

Define and write constants

c`gravity = 9.81;

CNSWrite@folder <> filename <> ".cns", Names@"c`∗"D, ToExpression@Name

2 2Mass.nb

Figure 2.5: Mathematica notebook for the 2 Mass system.

2.3 Defining a model - Woodpecker 4 DoF Example 15

Libraries
 Path to custom libraries

AppendTo@$Path, "j:êWork JankoêCommonFilesêMath"D;

Needs@"MultiBodyDynamics`MultiBodyDynamics`"D;

WoodpeckerToy - 4 DoF
dr. Janko Slavic, 2009
www.fs.uni-lj.si/ladisk/~slavic/

Coordinates
Generalized

GC := 8
b`ring`x@tD, b`ring`y@tD, b`ring`Rz@tD, b`bird`Rz@tD<;

Dependent

DC := 8b`bird`x@tD, b`bird`y@tD<;

b`bird`xAt_E := c`lM ∗ Cos@b`ring`Rz@tDD + c`lG ∗ Cos@b`bird`Rz@tDD + b`r

b`bird`yAt_E := b`ring`y@tD + c`lM ∗ Sin@b`ring`Rz@tDD + c`lG ∗ Sin@b`bir

Kinetic, potential energy and virtual work
Kinetic energy

EkAt_E :=

H∗ring∗L
1

2
b`ring`m ∗ vRing@tD2 +

1

2
b`ring`Jzz ∗ b`ring`Rz'@tD2 +

H∗bird∗L
1

2
b`bird`m ∗ vBird@tD2 +

1

2
b`bird`Jzz ∗ b`bird`Rz'@tD2

vRingAt_E := b`ring`x'@tD2 + b`ring`y'@tD2

vBirdAt_E := b`bird`x'@tD2 + b`bird`y'@tD2

Potential energy

EpAt_E :=

c`gravity ∗ b`ring`m ∗ b`ring`y@tD +
c`gravity ∗ b`bird`m ∗ b`bird`y@tD +
1

2
c`spring ∗ Hb`bird`Rz@tD − b`ring`Rz@tDL2

Virtual work

δWAt_E := 0

Equations of motion

EM = EquationsOfMotion@Ek@tD, Ep@tD, GeneralizedForces@δW@tD, GCD, GC

Mass matrix and h vector

8m, h< = MassMatrixAndHVector@Ek@tD, Ep@tD, GeneralizedForces@δW@tD,

Save model for MultiBody Dynamics Simulator
Name of model

filename = "WoodpeckerToy";
folder = "j:ê";

Write mass matrix, h vector and mechanical energy

MMXWrite@folder <> filename <> ".mmx", mD
HVWrite@folder <> filename <> ".hv", hD
HVWrite@folder <> filename <> ".me", Ek@tD + Ep@tDD

Write generalized and dependent coordinates

GCWrite@folder <> filename <> ".gc", GCD
GCWrite@folder <> filename <> ".dc", PrepareDependentCoordinates@Defi

Define and write constants

c`gravity = 9.81;
c`lM = 0.01;
c`lG = 0.015;
c`spring = 0.0056;
CNSWrite@folder <> filename <> ".cns", Names@"c`∗"D, ToExpression@Name

2 WoodpeckerToy 4DoF.nb

Figure 2.6: Mathematica notebook for the Woodpecker 4 DoF system.

2.3 Defining a model - Woodpecker 4 DoF Example 16

With help of the Mathematica packages the Jacobian vector and the Jacobian scalar of the dependent
coordinates are automatically generated (section 3.4.6) [2, 3].

The WoodpeckerToy.dc file for the Woodpecker 4 DoF model is shown here:

%%%new%%%
b‘bird‘x[t]
%%definition c‘lG*Cos[b‘bird‘Rz[t]] + c‘lM*Cos[b‘ring‘Rz[t]] +. . .
%%J
1
0
-(c‘lM*Sin[b‘ring‘Rz[t]])
-(c‘lG*Sin[b‘bird‘Rz[t]])
%%j
-(c‘lG*Cos[b‘bird‘Rz[t]]*Derivative[1][b‘bird‘Rz][t]ˆ2). . .

%%%new%%%
b‘bird‘y[t]
%%definition
c‘lG*Sin[b‘bird‘Rz[t]] + c‘lM*Sin[b‘ring‘Rz[t]]. . .
. . .

2.3.2 The environment

The WoodpeckerToy.wld file looks like this:

[main]
decimalSeparator = .
numberOfGeneralizedCoodinates = 4
minimumTimestep = 1e-12
maximumTimestep = 1e-5
maximumPenetration = 1e-6
writeToHistoryMultipleOfMaximumTimestep = 1
breakTime = 1.0

[bodies]
body1 = ring.bdy
body2 = stick.bdy
body3 = bird.bdy
body4 = ringF.bdy
body5 = foot.bdy
body6 = ringSideR.bdy
body7 = ringSideL.bdy

From the World file we can see that there are seven bodies in the system (Figure 2.7).
There is a problem with the ring to stick interaction. The ring is embracing the stick and by using only
extrusion bodies this needs to be done by combining four bodies: ring , ringF , ringSideR and ringSideR.

2.3 Defining a model - Woodpecker 4 DoF Example 17

However, to speed-up the computation all the mass properties can be added to one body (e.g. ring) and
other bodies can be defined its virtual bodies (see option virtualToBody in section 3.4.3). In this way
the ringSideR and ringSideL can have unilateral contact with the stick, while the contact dynamics is
actually acting on the body ring .

Figure 2.7: Woodpecker in the Multibody Dynamics Symulator.

2.3.3 Defining body shape, contact properties, etc

The Mathematica packages can also help you with creating complex body shapes. Figure 2.8 shows
Mathematica notebook for creating the bird shape (exs file).

The contact properties for the system are:

2.3 Defining a model - Woodpecker 4 DoF Example 18

Libraries
 Path to custom libraries

AppendTo@$Path, "j:êWork JankoêCommonFilesêMath"D;

Needs@"MultiBodyDynamics`MultiBodyDynamics`"D;

WoodpeckerToy - Bird
dr. Janko Slavic, 2009
www.fs.uni-lj.si/ladisk/~slavic/

This file is used to create the exact shape of the bird

CirclAr_, n_E := ModuleB8a, i<,

TableB:r CosB2 π
i

n
F, r SinB2 π

i

n
F>, 8i, 0, n<F

F

ElipseAr1_, r2_, n_E := ModuleB8a, i<,

TableB:r1 CosB2 π
i

n
F, r2 SinB2 π

i

n
F>, 8i, 0, n<F

F

body = Elipse@0.01, 0.02, 50D;
beak = Elipse@0.0201, 0.002, 50D;
head = Elipse@0.01, 0.01, 50D;
feet = Elipse@0.015, 0.002, 50D;

TranslateDataAdata_, x_, y_E := Module@8<,

Transpose@8x, y< + Transpose@dataDDD

data = Join@
Take@body, 81, 6<D,
TranslateData@Take@head, 845, 50<D, 0, 0.02D,
TranslateData@Take@head, 81, 20<D, 0, 0.02D,
TranslateData@Take@beak, 817, 35<D, 0, 0.02D,
TranslateData@Take@head, 831, 32<D, 0, 0.02D,
TranslateData@Take@body, 821, 25<D, 0, 0D,
TranslateData@Take@feet, 820, 32<D, 0, 0D,
TranslateData@Take@body, 827, 51<D, 0, 0D

D;

ListPlot@data, Frame → True, Axes → False, PlotJoined → TrueD

-0.020 -0.015 -0.010 -0.005 0.000 0.005 0.010
-0.02

-0.01

0.00

0.01

0.02

0.03

a = Min@Transpose@dataD@@1DDD

−0.0201

Position@data, aD

8842, 1<<

data@@42, 2DD

0.02

Write/ReadFile

filename = "j:êbird.exs";
EXSWrite@filename, dataD

dataread = EXSRead@filenameD;

2 Bird.nb

Figure 2.8: Mathematica notebook for creation of the Bird shape.

[stick-ringSideR]
friction=0.3
restitutionNormal=0
restitutionTangent=0
parameterNi=0
initialTemperature=0

[stick-ringSideL]
friction=0.3
restitutionNormal=0
restitutionTangent=0
parameterNi=0
initialTemperature=0

[stick-bird]
friction=0.3
restitutionNormal=0.5
restitutionTangent=0
parameterNi=0
initialTemperature=0

2.4 Defining a model - WearBalls 19

2.4 Defining a model - WearBalls

WearBalls is a simple model of five balls bouncing and colliding with side-wall and sinusoidally moving
ground, Figure 2.9. Here we will discuss how to deal with wear which is defined in the watches file.

Figure 2.9: WearBalls model.

The watches file looks like this:
[ball1]
contactWatch = all
directionInside=1
maxChange=0.002

[ball2]
contactWatch = all
directionInside=1
maxChange=0.002

[ball3]
contactWatch = all
directionInside=1
maxChange=0.002

[ball4]
contactWatch = all
directionInside=1
maxChange=0.002

[ball5]
contactWatch = all
directionInside=1
maxChange=0.002

2.4 Defining a model - WearBalls 20

The watches file will cause the shape of each ball to change (wear) regarding to the loss of mechanical
energy at the surface of the body; where the point with maximum loss of mechanical energy will reshape
to the inside for 0.002 m. Running the first version for a few moments create the 000 folder that can be
used as a starting model version for job run.

The job file:

[main]
jobs=000-013
maxMinutesForJob=10
maxMinutesForJobs=300
createNextVersionAtEnd=1

will start running the (already created) version 000 and at the end it will create the version 001 and
start running it. This will continue until the version 013. The shapes of the version 013 are shown in the
Figure 2.10.

Figure 2.10: WearBalls model after 13 wear cycles.

If the watches file defines the bodyBalancedUpdate wear:

[bodyBalancedUpdate]
body = ball1,ball2,ball3,ball4,ball5
maxChange=0.002

then the wear all bodies is balanced: with maximum wear at the point of maximum loss of mechanical
energy of all bodies. The result of version 013 with bodyBalancedUpdate is shown in Figure 2.11.

2.4 Defining a model - WearBalls 21

Figure 2.11: WearBalls model after 13 body-balanced wear cycles.

Chapter 3

Specification

3.1 Units

All units are kg, m, s, rad, ◦C.

3.2 Mathematical expression

The program uses contexts to organize names of symbols.
For example all bodies are in the context b and each body has its own context that is the same as the
name defined in the body file. To access to the coordinate x of the body named mass1 the mathematical
expression is: b‘mass1‘x[t].
List of contexts:

b bodies (use bodyName, see also section 3.4.3)

c constants

coordinate possible values: x, y, z, Rx, Ry,Rz

g denotes generalized coordinate which is not directly bounded to a body

©e whenever mathematical expression can be used this sign will denote this.

Mathematical expressions are

Mathematical expression can contain:

• Generalized coordinates (see section 3.4.5) and its derivatives (e.g. b‘rect‘x[t]).

• Mass properties (e.g. b‘rect‘m, b‘rect‘Jzz,. . .).

• Constants (see section 3.4.7, e.g. c‘gravity).

22

3.2 Mathematical expression 23

• Mathematical functions like sin(x), cos(x), arcsinh(x), log10(x), ln(x), logN(base, x), sqr(x),. . .

• Operands: x!, xˆy, *, +, -,. . .

Note: First derivative (velocity) is denoted by Derivative[1][b‘rod‘x][t] or by b‘rod‘x’[t].

Note: [t] is removed, i.e.: b‘rect‘x[t] is replaced by b‘rect‘x. You cannot use functions Sin[t], but you
can Sin[1*t]!

3.3 Shortcut keys 24

3.3 Shortcut keys

A zoom in.
shift+A zoom-in with adjusting the focus.

Y zoom out.
shift+Y zoom out with adjusting the focus.

S change font scale (used for contact watches).

B changes background color to white and back.

3.4 File specifications 25

3.4 File specifications

3.4.1 World

File extension: wld

Example of a file with default values (used if key is not given):

[main]
decimalSeparator = .
workingDirectory = current
numberOfGeneralizedCoodinates = 1
LCPPivotToleranceMin = 1e-14
LCPPivotToleranceMax = 1e-10
LCPLexicoZeroTolerance = 1e-8
logLCPUnboundedRay = 0
logLCPMaxNumberOfIterations = 0
ZeroVelocityTolerance = 1e-18
TryToSolveByGoingBack = 0 ← 1=True, 0=False
minimumTimestep = 1e-12
maximumTimestep = 1e-5
maximumPenetration = 1e-6
maximumDisplacementFactor = 0.5
writeToHistoryMultipleOfMaximumTimestep = 1
writeToHistoryAtCollision = 0 ← 1=True, 0=False
writeToHistoryEachTimeStep = 0 ← 1=True, 0=False
constantListFile = current.cns
generalizedCoordinatesFile = current.gc
dependentCoordinatesFile = current.gc
massMatrixFile = current.mmx
hVectorFile = current.hv
mechanicalEnergyFile = current.me
contactPropertiesFile = current.cop
watchesFile = current.wtc
breakTime = 1 ← ©e

[bodies]
body1 = rect.bdy
body2 = circle.bdy

LCPPivotToleranceMin, LCPPivotToleranceMax , LCPLexicoZeroTolerance define the parameters for
the LCP Solver. In case of problems with obtaining the solution try to change this settings. For more
accurate results and for geometrically smaller bodies smaller tolerances should be used.

minimumTimestep and maximumTimestep are the minimum and the maximum allowed time step of
the numerical integration, respectively. The maximum time step is in general defined by the numeri-
cal integration of the differential equations, while the minimum time step is defined by collisions. The

3.4 File specifications 26

program automatically adjusts the time step between min and max to achieve the penetration limit max-
imumPenetration.

TryToSolveByGoingBack if true at unsolvable time-step goes two time-steps back to the history and
tries again.

maximumDisplacementFactor maximal displacement is estimated according to the geometry and
current velocity and then multiplied by the maximumDisplacementFactor . maximumDisplacementFactor
should be between 0.1 (quick) and 10 (slow); smaller values can lead to over-penetrations. The body-
defined maximumDisplacementFactor overrides the world defined (see 3.4.3).

breakTime can be a mathematical expression; however, it is calculated at start only.

logLCPUnboundedRay if True, LCP unbounded ray alert is written to log.

logLCPMaxNumberOfIterations if True, LCP maximum number of iterations alert is written to log.

ZeroVelocityTolerance Is used to create the set of non-impacting contacts.

Note: current is a special token that can be used to replace for example working directory by the direc-
tory of world file.
Token can also be used in the filenames, i.e.: “current.cns” is replaced with “worldFileName.cns”.

3.4 File specifications 27

3.4.2 Job

File extension: job

Example of a job file with default values (used if key is not given):

[main]
worldFile=default.wld
jobs= ← example: 001,005,009
lexicoRandomizationRange=0.0,0.0
createNextVersionAtEnd=0 ← 1=True, 0=False
maxLinesInLog=0
maxMinutesForJob=MaxInt
maxMinutesForJobs=MaxInt
framesPerSecond=0
delayStartMinutes=0
exitAtFinish=0 ← 1=True, 0=False

Note: the model versions (saved in folders) that are about to be ran need to exist. If there are iterative
models that create a new version at the end at least the first version needs to exist.

worldfile if not present then the name of the job file is used.

jobs lists (000,001,005) and ranges can be used (005-015).

lexicoRandomizationRange if set then the LCPLexicoZeroTolerance (see .wld file, section 3.4.1) is
randomized at each time-step.

createNextVersionAtEnd if enabled then at the end of job next version is created with blank history
files.

command-prompt jobs can be started as parameters in command-prompt.
Example: start \low \hold MultiBodyDynamicsSimulator subdir\BrushSystem.job

maxLinesInLog can be used to break simulation if the maximum number of allowed log lines is exceeded.
If maxLinesInLog=0 the log checking is off.

3.4 File specifications 28

3.4.3 Body

File extension: bdy

Example of a file:

[main]
name = rect
virtualToBody =
RGBColor = 0 1 0
shapeType = extrusionSolid
shapeFile = rect.exs
density = 7900
thickness = 0.1
maximumDisplacementFactor = 0.1
skinThickness = 0.001 ← not needed by default
correctOrigin = 1 ← 1=True, 0=False

[Mass properties]
mass = 1
InertiaXX = 0.004
InertiaXY = 0.004
InertiaXZ = 0.004
InertiaYY = 0.004
InertiaYZ = 0.004
InertiaZZ = 0.004

[startPosition]
x = 0
y = 1.1
z = 0
Rx = 0
Ry = 0
Rz = 0

[startVelocity]
x = 0
y = 1.1
z = 0
Rx = 0
Ry = 0
Rz = 0

Note: skinThickness defines the maximum depth of body which is checked for penetration (if not set
then the default value is: 100×maximumPenetration, see 3.4.1).
Note: section Mass properties is optional. If mass and mass moment of inertia ZZ are not defined, then
they are calculated by using shape data and density.
Note: if body is virtual to another body use the key virtualToBody to define to which body is virtual to.

3.4 File specifications 29

Virtual body means that the referenced body uses only the shape of the virtual body to detect collisions.
Note: If the extrusion shape file (see 3.4.4) origin is not at the center of mass and the correctOrigin is
set to True, then the origin is corrected to start at the center of mass.

maximumDisplacementFactor: the body-defined maximumDisplacementFactor overrides the world
defined (see 3.4.1).

3.4 File specifications 30

3.4.4 ExtrusionShape

File extension: exs

Example of a file:

points = 4
%%data
1.0 0.125 -.52 1.0 %← x
1.0 0.50 -1.31 1.0 %← y
%%enddata

Note: extrusion shape needs to be closed (first and last points are the same). It is also important that
the inside of the body is on the left hand side in one moves in the direction from first to the last point.

3.4.5 GeneralizedCoordinates

File extension: gc

Example of a file:

b‘rect‘x[t]
b‘rect‘y[t]
b‘rect‘Rz[t]
g‘relative1[t]

See also section 3.2.

3.4.6 DependentCoordinates

File extension: dc

Example of a file:

3.4 File specifications 31

%%%new%%%
b‘bird‘x[t] ← coordinate name, see 3.4.5.
%%definition
c‘lG + c‘lM ← position ©e
0 ← velocity ©e
0 ← acceleration ©e
%%J ← Jacobian vector
0 ← according to 1st generalized coordinate ©e
0 ← according to 2nd generalized coordinate ©e
0 ← according to 3rd generalized coordinate ©e
%%j ← Jacobian scalar
c‘lG + c‘lM ← ©e

%%%new%%%
b‘bird‘y[t]
%%definition
...

3.4.7 Constants

File extension: cns

Example of a file:

c‘force1x = 1
c‘force1y = 2
c‘gravityz = 9.81

Notation: c‘constantName

c denotes constant object
constantName can be whatever

3.4.8 HVector

File extension: hv

Example of a file:

c‘force1x ← ©e
c‘force1y + c‘gravityz b‘rect‘m ← ©e
c‘force1x (c‘j1y Cos[b‘rect‘Rz[t]] - c‘j1x Sin[Derivative[1][b‘rod‘x][t]]) ← ©e
+· · ·

Note: vector length equals the number of generalized coordinates. Mathematical expressions are used ©e
.

3.4 File specifications 32

3.4.9 MechanicalEnergy

File extension: me

Example of a file:

c‘gravity*b‘rod‘m*b‘rod‘y[t] + (b‘rod‘Jzz*Derivative[1][b‘rod‘Rz][t]ˆ2)/2 +· · · ← ©e

Note: mechanical energy should be written in first line.

3.4 File specifications 33

3.4.10 MassMatrix

File extension: mmx

Example of a file:

b‘rect‘m 0 0 ← ©e
0 b‘rect‘m 0 ← ©e
0 0 b‘rect‘Jzz ← ©e

See section 3.2.

3.4.11 ContactProperties

File extension: cop

Example of a file:

[rect1-rect2] % there should be names of bodies, see also section 3.4.3
resistingPenetration=T:T
friction=0.5-1/vRel
restitutionNormal=0.5-1/temp
restitutionTangent=0.5
parameterNi=0
initialTemperature=0

[rect1:all]
resistingPenetration=T:T
friction=0.5
restitutionNormal=0.5
restitutionTangent=0.5
parameterNi=0
initialTemperature=0

Note: contact can be defined between two bodes (e.g. [rect-ball]) or between a body and all other
(e.g. [rect:all]). First body:all is read and then overwritten with body-body properties.

Note: contact between two bodies is defined by:

resistingPenetration defines if bodies resist penetration. Possible cases: T:T, T:F, F:T.
friction coefficient of friction function
restitutionNormal coefficient of restitution function in normal direction
restitutionTangent coefficient of restitution function in tangential direction
parameterNi parameter function of tangential restitution function
initialTemperature the initial temperature of a contact

Functions of contact can contain any constant values and variables “temp” and “vRel”.

temp denotes the contact temperature
vRel denotes the absolute value of the relative tangential velocity
initialTemperature the initial temperature of a contact

3.4 File specifications 34

3.4.12 Watches and Reshaping

File extension: wtc

Example of a file:

[common]
timeConstant = 0
reshapingCycles = 1
smoothWorkLeftRight = 0
convertImpulseToForce = 0 ← 1=True, 0=False
cummulativeWork = 0 ← 1=True, 0=False
writeAveragedTDivN = 0 ← 1=True, 0=False
absoluteAngleInsteadOfWork = 0 ← 1=True, 0=False

[constantsUpdate] % this is body balanced updating (according to the loss of ME)
body = brushpin1,brushpin2,brushpin3
constant = c‘brushpin1y,c‘brushpin2y,c‘brushpin3y
maxChange = 0.2e-6

[changeConstants]
constant = c‘springA,c‘damping
change = -1,-0.03

[reshapeWindow]
cutHiLowValues = 0.0
standardDeviationRange = -100,+100

[bodyBalancedUpdate]
body = brushpin1,brushpin2,brushpin3
maxChange=0.1e-6

[rect1] % there should be name of the body, see also section 3.4.3
contactWatch=1,2,5-10
[rect2]
contactWatch=5
[rect3]
contactWatch=all
directionX = 0
directionY = 0
directionInside = 0
maxChange =0

3.4 File specifications 35

[rect3:0] % in case of reshapingCycles = 2 this would be used for even history num-
bers
contactWatch=1-5
directionInside = 1
maxChange =1.e-6
[rect3:1] % in case of reshapingCycles = 2 this would be used for odd history num-
bers
contactWatch=6-15
directionInside = 1
maxChange =1.e-6,-1.e-6 % wear, grow combination
[rect4]
contactWatch=all:
[rect5]
contactWatch=1:3,[4-5]

Watches. Here are some notes on how to define Watches: the values that will be watched.

contactWatch: define which points of a body should be watched.
contactWatch: use single point (e.g. 1), ranges (e.g. 1-3), combination (e.g. 1,2,3,7-10,15) or all.
contactWatch: use a colon to combine contact points to a single watch (e.g. 1:3 or all:).
contactWatch: if definition inside square brackets (e.g. []) then the impulses are converted from relative
normal-tangential coordinate system to the absolute x-y coordinate system (e.g. [1:3] or [all:]).

timeConstant: if >0 then the output impulse is decayed. This is a simulation of measuring the forces
with piezo-electric sensor.

cummulativeWork: if is true then the locally lost work is cummulative (summed).

writeAveragedTDivN: if is true then the watches.txt file includes the running average of the tangen-
tial/normal impulse (force).

absoluteAngleInsteadOfWork: instead of work the relative angle of contact point is watched. The
output is angle between the normal vector and the absolute x axis (in rad). For consistent output: use
only with the option writeToHistoryAtCollision, see section 3.4.1 and use only with not combined point
ranges (e.g. 30-98 is ok, 30:98 is not).

smoothWorkLeftRight if not zero then, the moving average smoothing is applied to the mechanical
energy lost at discrete points that define the body.

bodyBalancedUpdate if set then then the statistical properties (mean, standard deviation,. . .) are
calculated according to all listed bodies (by default the properties are calculated for each body individu-
ally). maxChange in the section bodyBalancedUpdate is used instead of the maxChange defined for each
particular body. Calculation is effected by the reshapeWindow section.

Reshaping. The selected points that are being watched can also be reshaped, see example in Sec-
tion 2.4. This is always done in iteratively: e.g. if the current run is numbered 000 and the option
createNextVersionAtEnd is enabled (section 3.4.2) then the next version’s (001) shape will be reshaped
according to the options given below.

3.4 File specifications 36

Theoretically the approach was presented in [4, 5]: The basic idea is that the amount of wear at selected
contact points is proportional to the rate of lost mechanical energy. However, at each iteration the maxi-
mum change is defined by maxChange occurring at contact point with highest loss of mechanical energy.
The direction of reshaping of the contact point is either defined by the body-relative-coordinate: (direc-
tionX, directionY) or by the option directionInside. If directionInside is 1 or -1 (1=inside, -1=outside)
then the directionX and directionY are calculated for each shape point according to the two neighboring
points.

maxChange: defines the maximum reshaping size at the contact point with the highest loss of mechanical
energy. maxChange can be as single value or as a range (e.g. maxChange=1e-6, -1e-6). In case of a range
the first value is used as maximum change for contact points with mechanical energy below average (left
side of Gaussian) and the second value is used as maximum change for contact points on right side of
Gaussian. For example: directionInside=1 and maxChange=1e-6,-1e-6 would cause the points with high
loss of mechanical energy (left side of Gaussian) to wear and the points with low or no loss of mechanical
energy to grow.

reshapeWindow. Sometimes the loss of mechanical energy is irregular with few points taking over all
the mechanical load; consequentially, proportional wear would not be appropriate. The reshapeWindow
options set a filter window for the loss of mechanical energy where cutHiLowValues defines the percentage
of data cut at low and at high end (to exclude the irregularities). The option standardDeviationRange
defines the range around the mean loss of mechanical energy that is used to calculate the proportional
wear.
The reshapeWindow effects: bodyBalancedUpdate, constantsUpdate and all bodies.

Updating constants. There are two ways for changing constants when a next version of a model
is created. The first one is called constantsUpdate where the constants are updated according to
accumulated mechanical energy of selected bodies. The second one is called changeConstants where
the constants are changed for a constant value in the next version. If booth options are enabled, the
constantsUpdate is applied first.

In the example above the constants c‘brushpin1y,c‘brushpin2y,c‘brushpin3y will be change proportionally
to the total work of bodies brushpin1,brushpin2,brushpin3 for a maximum change +0.2e-6. Calculation
of the total work is effected by the reshapeWindow section (cutHiLowValues).

changeConstants: a list of constants that are being iteratively updated when creating a new job. the
change is constant according to the value set by change. Several constants can be separated by a comma.
changeConstants is applied after constantsUpdate.

reshapingCycles In case different reshaping parameters should be used for different versions of the
model (each run/version has its own folder, i.e. 001) reshapingCycles can be used. If for example
reshapingCycles=2 is used then the section [bodyName:0] is used for even history names (000, 002,
004,. . .) and [bodyName:1] for the odd history names (001, 003, 005,. . .). Similarly, reshapingCycles=3
would designate versions 000, 003, 006,. . .
The program first searches for [bodyName:?] sections and if not successful then for [bodyName] section.

Bibliography

[1] J. Slavič. Nonlinear and nonsmooth dynamics of discretely defined system of rigid bodies with unilateral
contacts. PhD thesis, Faculty of mechanical engineering, University of Ljubljana, 2005. In Slovene.

[2] F Pfeiffer and Ch Glocker. Multibody Dynamics with Unilateral Contacts. John Wiley & Sons, Inc,
New York, 1996.

[3] J Slavič and M Boltežar. Nonlinearity and non-smoothness in multi body dynamics: application to
woodpecker toy. Journal of Mechanical Engineering Science, 220(3):285–296, 2006.

[4] J Slavič and M Boltežar. Simulating multibody dynamics with rough contact surfaces and run-in
wear. Nonlinear Dynamics, 45(3-4):353–365, August 2006.

[5] J Slavič, M D. Bryant, and M Boltežar. A new approach to roughness-induced vibrations on a slider.
Journal of Sound and Vibration, 306(3-5):732–750, Oct 2007.

37

Index

©e , 22
2 Mass, 13
2Mass model, 9
2Mass.cns, 11
2Mass.cop, 12
2Mass.dc, 11
2Mass.gc, 10
2Mass.hv, 11
2Mass.me, 12
2Mass.mmx, 11
2Mass.wtc, 12

A, 24
absoluteAngleInsteadOfWork, 35
Axes, 6

B, 24
b, 10, 22
bdy, 9, 10, 28
Bodies, 5
Body, 5
bodyBalancedUpdate, 20, 35, 36
breakTime, 26
brushpin1,brushpin2,brushpin3, 36

c, 31
c‘brushpin1y,c‘brushpin2y,c‘brushpin3y, 36
change, 36
changeConstants, 36
cns, 11, 31
Collisions, 5
command-prompt, 27
constantName, 31
Constants, 22
constantsUpdate, 36
contact watch, 6
contactWatch, 35
contexts, 10, 22
Control window, 5, 12

cop, 12, 33
correctOrigin, 29
Create next version, 5
createNextVersionAtEnd, 27, 35
cummulativeWork, 35
current, 26
cutHiLowValues, 36

data.txt, 13
dc, 11, 30
default, 25, 27
Delphi 7, 4
directionInside, 36
directionX, 36
directionX, directionY, 36
directionY, 36

exs, 17, 30

File/Open, 12
friction, 33

gc, 10, 30
Generalized coordinates, 22
GLScene, 4

History, 5
History window, 5
hv, 11, 31

initialTemperature, 33

Job, 6
job, 20, 27
jobs, 27
Jobs window, 5

LCP Solver, 5
LCPLexicoZeroTolerance, 25, 27
LCPPivotToleranceMax, 25
LCPPivotToleranceMin, 25

38

INDEX 39

lexicoRandomizationRange, 27
Log, 5
Log window, 5
log.txt, 12
logLCPMaxNumberOfIterations, 26
logLCPUnboundedRay, 26

Main window, 5, 12
Mass properties, 22, 28
mass1, 22
mass1.bdy, 9
mass1.exs, 10
Mathematica, 13, 16, 17
Mathematical functions, 23
maxChange, 35, 36
maximumDisplacementFactor, 26, 29
maximumDisplacementFactor:, 29
maximumPenetration, 26
maximumTimestep, 25
maxLinesInLog, 27
me, 11, 32
minimumTimestep, 25
mmx, 11, 33
Multibody Dynamics Simulator, 4, 5, 12, 13
MultiBodyDynamicsSimulator.exe, 4

Operands:, 23
Orientation box, 6

parameterNi, 33
ParseExpr, 4
Plot window, 5, 6, 13
Pointer, 6, 12

qtintf70.dll, 4

reshapeWindow, 35, 36
reshapingCycles, 36
resistingPenetration, 33
restitutionNormal, 33
restitutionTangent, 33
ring, 16, 17
ringF, 16
ringSideL, 17
ringSideR, 16, 17

S, 24
shapeFile, 10

shapeFile = mass1.exs, 10
shift+A, 24
shift+Y, 24
short-keys, 12
skinThickness, 28
smoothWorkLeftRight, 35
standardDeviationRange, 36
Start with this, 6

temp, 33
timeConstant, 35
TryToSolveByGoingBack, 26

virtualToBody, 17, 28
vRel, 33

Watches, 35
watches, 19, 20
watches.txt, 12, 13
wld, 25
Woodpecker 4 DoF, 13
WoodpeckerToy.dc, 16
WoodpeckerToy.wld, 16
World, 5
World file, 9
worldfile, 27
writeAveragedTDivN, 35
wtc, 12, 34

Y, 24

ZeroVelocityTolerance, 26

	Introduction
	Running the program
	Front panel
	Control window
	Jobs window
	History window
	Plot window

	Defining a Model - 2 Mass Example
	The environment
	Bodies
	Generalized coordinates
	Dependent coordinates
	Mass matrix
	H Vector
	Constants
	Mechanical energy
	Contact properties
	Watches
	Running the model
	Results

	Defining a model - Woodpecker 4 DoF Example
	Defining the model with Mathematica packages
	The environment
	Defining body shape, contact properties, etc

	Defining a model - WearBalls

	Specification
	Units
	Mathematical expression
	Shortcut keys
	File specifications
	World
	Job
	Body
	ExtrusionShape
	GeneralizedCoordinates
	DependentCoordinates
	Constants
	HVector
	MechanicalEnergy
	MassMatrix
	ContactProperties
	Watches and Reshaping

	References

